Add like
Add dislike
Add to saved papers

Nitrate supplementation attenuates As(V) toxicity in Solanum lycopersicum L. cv Pusa Rohini: Insights into As(V) sub-cellular distribution, photosynthesis, nitrogen assimilation, and DNA damage.

The present study investigates As(V) toxicity in tomato (Solanum lycopersicum L. cv Pusa Rohini) and its alleviation by exogenous supplementation of nitrate. The seven days old seedlings were grown up to thirty days under defined levels of As(V) concentrations (0, 2.5, 6.25, and 12.5 mg/250 g soil) in alone or/and in combination with 20 mM nitrate. The arsenic accumulation, lipid peroxidation, DNA damage, photosynthesis, nitrogen assimilation, and AsA-GSH cycle were evaluated. Results revealed that As(V) exposure significantly (P ≤ 0.05) enhances the root, leaf and leaf sub-cellular arsenic accumulation, H2 O2 and MDA contents in a dose-dependent manner. Comet assay indicated a progressive enhancement in the DNA damage with maximum tail length (58.33 ± 9.87 μm) and tail moment (25.05 ± 2.80) at 12.5 As(V) exposure. Nitrate supplementation counteracted As(V) toxicity on photosynthesis, nitrogen assimilation, and boosts AsA-GSH cycle at each respective As(V) treatments. The net photosynthesis was increased by 18% at 6.25 As(V), however, stomatal conductance and Fv /Fm were increased by 26%, and 11%, respectively, at 2.5 As(V) exposure. The activities of NR and GS were enhanced by 29% and 18%, respectively; contents of NO3 - , NO2 - and NH4 + were improved by 21%, 56%, and 13%, respectively, at 6.25 As(V) exposure. The activities of APX and GR were increased concomitantly with the ratios of AsA/DHA and GSH/GSSG. The study demonstrates that nitrate supplementation significantly (P ≤ 0.05) decreases As(V) accumulation, boosts the performance of AsA-GSH cycle, and consequently enhances the photosynthesis and nitrogen assimilation. Based on present findings, nitrate supplementation could be recommended as a promising approach to ameliorate the As(V) toxicity in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app