Add like
Add dislike
Add to saved papers

Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects.

Inonotus obliquus polysaccharide (IOPS) was initially separated and purified via precipitation from an aqueous extract with 80% alcohol, a DEAE-52 cellulose anion exchange column, and a Sephadex G-100 gel permeation chromatography system. IOPS was found to have a molecular weight of 111.9 kDa. In L-glutamic acid (L-Glu)-damaged HT22 cells, a 3-h pre-incubation with IOPS enhanced cell viability, inhibited apoptosis and caspase-3 activity, reduced the release of lactate dehydrogenase, restored the dissipated mitochondrial membrane potential, and suppressed the excess accumulation of intracellular reactive oxygen species. Compared with L-Glu-exposed cells, IOPS pre-treated cells exhibited reduced levels of Bcl-2 associated X protein (Bax) and Kelch-like ECH-associated protein 1 (Keap1) and enhanced levels of B-cell lymphoma-2 (Bcl-2), NF-E2p45-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase-1 (SOD-1), and cysteine ligase catalytic subunit. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week course of IOPS improved the pathological behaviors related to memory and cognition, reduced the deposition of β-amyloid peptides and neuronal fiber tangles induced by enhanced phosphor-Tau in the brain, and modulated the levels of anti- and pro-oxidative stress enzymes. Additionally, IOPS enhanced the expression levels of Nrf2 and its downstream proteins, including HO-1 and SOD-1, in the brains of APP/PS1 mice. The present study successfully demonstrated the protective effect of IOPS against AD and revealed the possible mechanism underlying the ability of IOPS to modulate oxidative stress, especially Nrf2 signaling, and mediate mitochondrial apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app