Add like
Add dislike
Add to saved papers

Effects of single species versus multispecies periodontal biofilms on the antibacterial efficacy of a novel bioactive Class-V nanocomposite.

Dental Materials 2019 March 14
OBJECTIVE: The objectives of this studywere to: (1) develop a novel bioactive nanocomposite for Class V restorations with subgingival margins to inhibit periodontal pathogens; and (2) investigate if the bioactive nanocomposite could inhibit multi-species periodontal biofilms with a potency as strong as that against single species biofilms.

METHODS: Nanocomposite was fabricated using dimethylaminohexadecyl methacrylate (DMAHDM), 2-methacryloyloxyethyl phosphorylcholine (MPC) and nanoparticles of amorphous calcium phosphate (NACP). Biofilms with 1, 3, 6 and 9 species of periodontal pathogens were grown on the composites and tested for live/dead staining, colony-forming units (CFU), metabolic activity, and biofilm matrix polysaccharide production.

RESULTS: The bioactive composite reduced protein adsorption by an order of magnitude (p < 0.05) and greatly reduced biofilm viability. It decreased the biofilm CFU by more than 3 orders of magnitude for all four types of periodontal biofilms, compared to control composite. With increasing the biofilm species from 1 to 9, the antibacterial efficacy of DMAHDM composite decreased; the CFU reduction folds decreased from 947 folds to 44 folds. In contrast, the MPC + DMAHDM composite maintained a CFU reduction folds of greater than 3000, showing a similar antibacterial potency from 1 to 9 species in the biofilms (p > 0.1).

CONCLUSION: Dual agents MPC + DMAHDM achieved the greatest inhibition in biofilm, without decreasing its antibacterial potency when the biofilm species was increased from 1 to 9. A single agent became less effective when the biofilm species was increased from 1 to 9.

SIGNIFICANCE: The multifunctional MPC + DMAHDM composite is promising for root caries treatment and Class V restorations with subgingival margins to effectively inhibit multispecies periodontal biofilms, combat periodontitis and protect the periodontium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app