Add like
Add dislike
Add to saved papers

Qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant by using quartz crystal microbalance with dissipation monitoring.

Understanding the interaction between inhaled nanoparticles and pulmonary surfactant is a prerequisite for predicting the fate of inhaled nanoparticles. Here, we introduce a quartz crystal microbalance with dissipation monitoring (QCM-D)-based methodology to reveal the extent and nature of the biophysical interactions of polymer- and lipid-based nanoparticles with pulmonary surfactant. By fitting the QCM-D data to the Langmuir adsorption equation, we determined the kinetics and equilibrium parameters [i.e., maximal adsorption (Δmmax ), equilibrium constant (Ka ), adsorption rate constant (ka ) and desorption rate constant (kd )] of polymeric nanoparticles adsorption onto the pulmonary surfactant (e.g., an artificial lipid mixture and an extract of porcine lung surfactant). Furthermore, our results revealed that the nature of the interactions between lipid-based nanoparticles (e.g., liposomes) and pulmonary surfactant was governed by the liposomal composition, i.e., incorporation of cholesterol and PEGylated phospholipid (DSPE-PEG2000 ) into DOPC-based liposomes led to the adsorption of intact liposomes onto the pulmonary surfactant layer and the mass exchange between the liposomes and pulmonary surfactant layer, respectively. In conclusion, we demonstrate the applicability of the QCM-D technique for qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant, which is vital for rational design and optimization of inhalable nanomedicines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app