Add like
Add dislike
Add to saved papers

Naringin nanoparticles against neurodegenerative processes: A preliminary work.

It is well established that during Alzheimer disease (AD), gradual loss of neuronal networks occurs in the brain, consequently, affecting cognition and memory tasks of the patients. Among other causative factors, oxidative stress induces changes that are eventually accompanied by an irreversible disruption of synaptic connectivity and death of neurons. Moreover, aging and oxidative stress cause alterations to the blood brain barrier, leading to increased permeability, which are thought to further aggravate the underlying pathology. Up to date, no effective treatment is available to Alzheimer's disease patients. Lately, scientific efforts are focusing on exploiting the antioxidant properties that natural polyphenol agents such as flavonoids possess and their potential beneficial effect against neurodegenerative diseases. For that reason, the current investigation, aims at developing more effective flavonoid agents by encapsulating naringin into modified PEG 3000 Silica nanoparticles before its use at cellular level. Overall, our findings suggest an enhanced protective capacity of naringin pegylated nanoparticles against Aβ amyloid linked oxidative stress mediated neurodegeneration in primary rat neuronal and glial hippocampal cultures for a certain incubation period. The functional biological reactivities of the novel flavonoid nanoparticles were in line with their physicochemical features and reflect the a) differential nature of the structural assemblies of the new nanoparticles, thereby distinguishing them from other polymeric and liposomal drug carriers, and b) significance and impact of PEG chemistry in the synthetic assembly of the nanocarriers. The ability of the employed nanoparticles to entrap a relatively high dose of otherwise insoluble drugs and their biological activity highlight their potential as brain targeting therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app