Add like
Add dislike
Add to saved papers

Neighboring genes are closely related to whole genome duplications after their separation.

BACKGROUND: The gene order in a eukaryotic genome is not random. Some neighboring genes show specific similarities, while others become separated during evolution. Whole genome duplication events (WGDs) have been recognized as an important evolutionary force. The potential relationship between the separation of neighboring genes and WGDs needs to be investigated. In this study, we investigated whether there is a potential relationship between separated neighboring gene pairs and WGDs, and the mechanism by which neighboring genes are separated. Additionally, we studied whether neighboring genes tend to show intrachromosomal colocalization after their neighborhood was disrupted and the factors facilitating the intrachromosomal colocalization of separated neighboring genes.

RESULTS: The separation of neighboring gene pairs is closely related to whole genome duplication events. Furthermore, we found that there is a double linear relationship between separated neighboring genes, total genes, and WGDs. The process of separation of neighboring genes caused by WGDs is also not random but abides by the double linear model. Separated neighboring gene pairs tend to show intrachromosomal colocalization. The conservativism of separated neighboring genes and histone modification facilitate the intrachromosomal colocalization of neighboring genes after their separation.

CONCLUSIONS: These results provide new insight into the understanding of evolutionary roles of locations and the relationship of neighboring gene pairs with whole genome duplications. Furthermore, understanding the proposed mechanism for intrachromosomal colocalization of separated genes benefits our knowledge of chromosomal interactions in the nucleus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app