Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Investigation into spinal anesthetic failure with hyperbaric bupivacaine: the role of cold exposure on bupivacaine degradation.

PURPOSE: Hyperbaric bupivacaine (0.75% in dextrose) is used for spinal obstetric anesthesia. Occasional clusters of anesthetic failures occur in this setting, not readily attributable to clinical factors. We hypothesized that cold temperature exposure is related to bupivacaine instability.

METHODS: An electronic survey was distributed to Canadian anesthesiologists to determine consistencies in spinal anesthesia practice, and to invite submission of failed bupivacaine samples for analysis. Another survey for hospital pharmacists focused on bupivacaine logistics. Ultraviolet (UV) spectrometry, differential scanning calorimetry, and high performance liquid chromatography were used to evaluate the effect of temperature on bupivacaine chemical stability. Mass spectrometry (MS) was used to observe bupivacaine and dextrose degradation in laboratory samples of hyperbaric 0.75% bupivacaine in dextrose. Hyperbaric bupivacaine that failed to produce adequate anesthesia in labour and delivery patients was subject to tandem MS/MS analysis on commonly observed ions to look for ion patterns consistent with bupivacaine degradation products and to compare with laboratory samples subjected to cold temperatures.

RESULTS: Canadian obstetric anesthesiologists report similar practices and use hyperbaric bupivacaine for spinal anesthesia. Pharmacists surveyed indicated facility storage at room temperature but variable temperatures during shipping. No standard procedure for failure reporting was identified. Analysis of bupivacaine showed a slight decrease in bupivacaine concentration or UV spectral changes after incubation at temperatures ≤ 4°C. Mass spectrometric analysis of hyperbaric bupivacaine from failed spinal anesthesia cases showed complex and inconsistent patterns of ion formation, and different from the ion patterns observed for cooled vs uncooled bupivacaine solutions. Temperature-related changes were noted for dextrose in cooled samples in which dextrose-related ions were formed.

CONCLUSIONS: Canadian clinical practice and handling of hyperbaric bupivacaine is consistent. Most respondents indicated an interest in a formal reporting and collection process. Cold exposure did not degrade bupivacaine. A complex and possibly inconsistent reaction involving dextrose was identified that requires further analysis of a larger sample size to elucidate the mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app