Add like
Add dislike
Add to saved papers

Treating waste with waste: the potential of synthesized alum from bauxite waste for treating car wash wastewater for reuse.

This study assessed the contaminant removal potential of a low-cost alum synthesized from bauxite slime waste compared to industrial grade alum [Al2 (SO4 )3 .18H2 O] in treating car wash wastewater using standard jar tests. The synthesized alum was subsequently applied as a coagulant to test the short-term performance of a bench scale flocculation-flotation system for treating car wash wastewater. Coagulant dosages and mixing intensities were optimized for both coagulants and differences were analyzed with R using two-way ANOVA with Tukey's (HSD) post hoc testing. Per the jar tests, percentage removal of up to 99%, 34%, and 75% of turbidity, anionic surfactants (AS), and COD, respectively, was achieved with 90 mg/L of the synthesized alum compared to 100%, 37%, and 74% for industrial grade alum. Contaminant removal efficiencies of both coagulants were comparable (p > 0.05). However, coagulant dosage strongly influenced the removal of turbidity, AS, and COD (p < 0.05) while mixing intensity influenced all but COD. The bench-scale flocculation-flotation system completely removed turbidity (100%) and reduced AS and COD by up to 92% and 99% respectively. The results of this study demonstrate the potential of alum synthesized from bauxite slime waste as a cheaper alternative for industrial grade alum in wastewater recycling for the car wash industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app