Add like
Add dislike
Add to saved papers

The mechanisms for the radioprotective effect of beta-d-glucan on high linear-energy-transfer carbon ion irradiated mice.

S. cerevisiae-derived-beta-d-glucan (S. cerevisiae-BG) is a natural polysaccharide with various biological effects. The present study was to investigate the protective effect of S. cerevisiae-BG on the injury induced by high linear-energy-transfer (LET) carbon ion irradiation and to reveal the protective mechanisms. Female mice were orally administrated with S. cerevisiae-BG before irradiation. 30-day survival of 6 Gy irradiated-mice was monitored. The damage and recovery of hematopoietic system were evaluated after 2 Gy irradiation, cytokines in plasma were detected, transcriptomics of bone marrow mononuclear cells (BMMNCs) were detected and analyzed. The mortality results showed that S. cerevisiae-BG could prolong the survival of mice exposed to 6 Gy. The results of BMMNCs injury analysis showed that S. cerevisiae-BG could reduce the ROS level, mitigate DNA damage and apoptosis. S. cerevisiae-BG increased the plasma radioprotective cytokines level in irradiated mice. Transcriptomics analysis revealed that S. cerevisiae-BG modulated the gene expression in BMMNCs of irradiated mice, 256 genes were significantly up-regulated and 97 genes were significantly down-regulated. Gene function and Gene Ontology analysis indicated the key genes related to hematopoiesis and immunity. Pathway analysis revealed that these up-regulated genes mainly focus on PI3K-Akt pathway and down-regulated genes mainly focus on MAPK pathway. These data contribute to understanding the molecular mechanisms of the radioprotective effect of S. cerevisiae-BG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app