Add like
Add dislike
Add to saved papers

Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data.

Gene 2019 March 13
BACKGROUND: Detecting heteroplasmic variations in the mitochondrial genome can help identify potential pathogenic possibilities, which is significant for disease prevention. The development of next-generation sequencing changed the quantification of mitochondrial DNA (mtDNA) heteroplasmy from scanning limited recorded points to the entire mitochondrial genome. However, due to the presence of nuclear mtDNA homologous sequences (nuMTs), maximally retaining real variations while excluding falsest heteroplasmic variations from nuMTs and sequencing errors presents a dilemma.

RESULTS: Herein, we used an improved method for detecting low-frequency mtDNA heteroplasmic variations from whole genome sequencing data, including point variations and short-fragment length alterations, and evaluated the effect of this method. A two-step alignment was designed and performed to accelerate data processing, to obtain and retain the true mtDNA reads and to eliminate most nuMTs reads. After analyzing whole genome sequencing data of K562 and GM12878 cells, ~90% of heteroplasmic point variations were identified in MitoMap. The results were consistent with the results of an amplification refractory mutation system qPCR. Many linkages of the detected heteroplasmy variations were also discovered.

CONCLUSIONS: Our improved method is a simple, efficient and accurate way to mine mitochondrial low-frequency heteroplasmic variations from whole genome sequencing data. By evaluating the highest misalignment possibility caused by the remaining nuMTs-like reads and sequencing errors, our procedure can detect mtDNA heteroplasmic variations whose heteroplasmy frequencies are as low as 0.2%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app