Add like
Add dislike
Add to saved papers

Efficient ten-gene analysis of NSCLC tissue samples by next-generation sequencing.

In the era of personalized medicine, lung cancer is a typical disease which can be treated strategically based on the patient's histological and molecular diagnosis. Immunohistochemistry (IHC), fluorescence in-situ hybridization (FISH), Sanger sequencing and real-time PCR are techniques commonly used in clinical laboratories. Many patients are required to use several of the above technologies to get a complete diagnosis, which is expensive and timeconsuming. Next generation of sequencing (NGS) has the advantage to simultaneously analyze multigene mutations. The average cost for each patient is affordable if each run contains a certain number of samples. In this study, we tested a 10-gene, 32-mutation detection NGS method, which was used to test 195 samples from non-small cell lung cancer (NSCLC). Sanger sequencing and Amplification-refractory Mutation System (AMRS) PCR were employed to verify Epidermal Growth Factor Receptor (EGFR) and Anaplastic Lymphoma Kinase (ALK) results. This NGS method was partially proved to have a higher sensitivity to detect mutations with low abundance than Sanger sequencing and even ARMS PCR. Using genomic DNA to detect gene fusions may have some disadvantages to miss low abundance or large fragment fusions. As compared to using a few different technologies to analyze multigene mutations, small NGS analysis panel is a clinically applicable, efficient and affordable choice for NSCLC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app