Add like
Add dislike
Add to saved papers

Understanding the effect of thionation on naphthalene diimide using first-principles predictions of near-edge x-ray absorption fine structure spectra.

The near edge X-ray absorption fine structure (NEXAFS) spectra of naphthalene diimide molecules with increasing degrees of thionation show distinct and systematic changes in the C 1s → π* manifold. However, interpretation of such spectra is difficult using experimental data alone, due to the limitation in experimental NEXAFS resolution. In this work, we have calculated the NEXAFS spectra of naphthalene diimide molecules with increasing degrees of thionation using the density functional theory-based eXcited electron and Core Hole approach. We find that the systematic broadening and intensity reduction in the peaks observed in the π* manifold with increasing thionation are the result of distinct changes in the chemical environment of the outer carbon atoms that are bonded directly to either oxygen or sulfur. Specifically, the C 1s → lowest unoccupied molecular orbital (LUMO) transition energy dramatically decreases with thionation, as the valence electron density of these carbon atoms is increased when highly electronegative oxygen atoms are replaced by less-oxidizing sulfur atoms. It is also shown that significant core level shifts present in naphthalene diimide-based molecule result in a mixing of the LUMO and LUMO + 1 character in the C 1s → π* manifold, meaning that experimentally observed peaks cannot be uniquely associated with the transitions of LUMO, LUMO + 1, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app