Add like
Add dislike
Add to saved papers

A semiempirical effective Hamiltonian based approach for analyzing excited state wave functions and computing excited state absorption spectra using real-time dynamics.

We describe a new approach to extract information about an excited state wave function using a reduced orbital space molecular orbital decomposition approach for time-dependent density obtained from real-time dynamics. We also show how this information about the excited state wave function can be used to accelerate the convergence of real-time spectra and model excited state electron dynamics. We have combined this approach with our recent implementation of the real-time intermediate neglect of differential overlap for spectroscopy (INDO/S) to study the solvatochromic shift of Nile Red in acetone, ethanol, toluene and n-hexane solvents, and, for the first time, the excited state absorption spectra of coronene, 5,10,15,20-tetra(4-pyridyl)porphyrin (TPyP), zinc phthalocyanine, and nickel TPyP using a semiempirical Hamiltonian.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app