JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Electrical Properties of Two-Dimensional Materials Used in Gas Sensors.

Sensors 2019 March 15
In the search for gas sensing materials, two-dimensional materials offer the possibility of designing sensors capable of tuning the electronic band structure by controlling their thickness, quantity of dopants, alloying between different materials, vertical stacking, and the presence of gases. Through materials engineering it is feasible to study the electrical properties of two-dimensional materials which are directly related to their crystalline structure, first Brillouin zone, and dispersion energy, the latter estimated through the tight-binding model. A review of the electrical properties directly related to the crystalline structure of these materials is made in this article for the two-dimensional materials used in the design of gas sensors. It was found that most 2D sensing materials have a hexagonal crystalline structure, although some materials have monoclinic, orthorhombic and triclinic structures. Through the simulation of the mathematical models of the dispersion energy, two-dimensional and three-dimensional electronic band structures were predicted for graphene, hexagonal boron nitride ( h -BN) and silicene, which must be known before designing a gas sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app