JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Inorganic and Hybrid Perovskite Based Laser Devices: A Review.

Materials 2019 March 15
Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate. This has been realized for the case of perovskite-based light emitting diodes (LEDs) but much less for the case of the respective laser devices. Here, the strides, exclusively in lasing, made since 2014 are presented for the first time. The solution processability, low temperature crystallization, formation of nearly defect free, nanostructures, the long range ambipolar transport, the direct energy band gap, the high spectral emission tunability over the entire visible spectrum and the almost 100% external luminescence efficiency show perovskite semiconductors' potential to transform the nanophotonics sector. The operational principles, the various adopted material and laser configurations along the future challenges are reviewed and presented in this paper.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app