Add like
Add dislike
Add to saved papers

Synthesis and encapsulation of V(IV,V) compounds in silica nanoparticles targeting development of antioxidant and antiradical nanomaterials.

The quest for effective treatments of oxidative stress has concentrated over the years on new nanomaterials with improved antioxidant and antiradical activity, thereby attracting broad research interest. In that regard, research efforts in our lab were launched to pursue such hybrid materials involving a) synthesis of silica gel matrices, b) evaluation of the suitability of atoxic matrices as potential carriers for the controlled release of V(IV)(VOSO4 ), V(V)(NaVO3 ) compounds and a newly synthesized heterometallic lithium-vanadium(IV,V) tetranuclear compound containing vanadium-bound hydroxycarboxylic 1,3-diamine-2-propanol-N,N,N',N'-tetraacetic acid (DPOT), and c) investigation of structural and textural properties of silica nanoparticles (NPs) by different and complementary characterization techniques, inquiring into the nature of the encapsulated vanadium species and their interaction with the siloxane matrix, collectively targeting novel antioxidant and antiradical nanomaterials biotechnology. The physicochemical characterization of the vanadium-loaded SiO2 NPs led to the formulation of optimized material configuration linked to the delivery of the encapsulated antioxidant-antiradical load. Entrapment and drug release studies showed a) the competence of hybrid nanoparticles with respect to encapsulation efficiency of the vanadium compound (concentration dependence), b) congruence with the physicochemical features determined, and c) a well-defined release profile of NP load. Antioxidant properties and the free radical scavenging capacity of the new hybrid materials (containing VOSO4 , NaVO3 , and V-DPOT) were demonstrated through a) 2-diphenyl-1-picrylhydrazyl (DPPH) free radical, and b) intracellular-extracellular reactive oxygen species (ROS) assays, through UV-Visible spectroscopy techniques, collectively showing that the hybrid silica NPs (empty-loaded) could serve as an efficient platform for nanodrug formulations counteracting oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app