Add like
Add dislike
Add to saved papers

Sustained elevation of cerebrospinal fluid glucose and lactate after a single seizure does not parallel with mitochondria energy production.

Epilepsy Research 2019 March 12
Generalized seizures trigger excessive neuronal firing that imposes large demands on the brain glucose/lactate availability and utilization, which synchronization requires an integral mitochondrial oxidative capability. We investigated whether a single convulsive crisis affects brain glucose/lactate availability and mitochondrial energy production. Adult male Wistar rats received a single injection of pentylentetrazol (PTZ, 60 mg/kg, i.p.) or saline. The cerebrospinal fluid (CSF) levels of glucose and lactate, mitochondrial respirometry, [14 C]-2-deoxy-D-glucose uptake, glycogen content and cell viability in hippocampus were measured. CSF levels of glucose and lactate (mean ± SD) in control animals were 68.08 ± 11.62 mg/dL and 1.17 ± 0.32 mmol/L, respectively. Tonic-clonic seizures increased glucose levels at 10 min (96.25 ± 13.19) peaking at 60 min (113.03 ± 16.34) returning to control levels at 24 h (50.12 ± 12.81), while lactate increased at 10 min (3.23 ± 1.57) but returned to control levels at 360 min after seizures (1.58 ± 0.21). The hippocampal [14 C]-2-deoxy-D-glucose uptake, glycogen content, and cell viability decreased up to 60 min after the seizures onset. Also, an uncoupling between mitochondrial oxygen consumption and ATP synthesis via FoF1-ATP synthase was observed at 10 min, 60 min and 24 h after seizures. In summary, after a convulsive seizure glucose and lactate levels immediately rise within the brain, however, considering the acute impact of this metabolic crisis, mitochondria are not able to increase energy production thereby affecting cell viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app