Journal Article
Review
Add like
Add dislike
Add to saved papers

Construction of ligand assay systems by protein-based semisynthetic biosensors.

Proteins as causative agents of diseases such as cancers, diabetes and neurological disorders are attractive drug targets. For developing chemicals selectively acting on key disease-causing proteins, one useful concept is the direct conversion of such target proteins into biosensors. This approach provides ligand-binding assay systems based on protein-based biosensors, which can quantitatively evaluate interactions between the protein and a specific ligand in many environments. Site-specific chemical modifications are used widely for the creation of protein-based semisynthetic biosensors in vitro. Notably, a few bio-orthogonal approaches capable of selectively modifying drug-targets have been developed, allowing conversion of specific target proteins into semisynthetic biosensors in live cells. These biosensors can be used for quantitative drug binding analyses in native environments. In this review, we discuss recent efforts for the construction of ligand assay systems using semisynthetic protein-based biosensors and their application to quantitative analysis and high-throughput screening of small molecules for drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app