Add like
Add dislike
Add to saved papers

Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models.

Nanomedicine 2019 March 16
AIM: Preclinical evaluation of a cytotoxic copper(II) complex formulated in long circulating nanoliposomes for melanoma treatment.

MATERIALS & METHODS: Liposomal nanoformulations of the copper complex were characterized in terms of thermodynamic behavior (differential scanning calorimeter), pH-sensitivity (spectrophotometry) and antiproliferative effects against murine melanoma B16F10 cells in vitro. Preclinical studies were performed in a C57BL/6 syngeneic melanoma model.

RESULTS: Nanoformulations were thermodynamically stable, and CHEMS-containing nanoliposomes were pH-sensitive and preserved the antiproliferative properties of the copper compound. These nanoformulations significantly impaired tumor progression in vivo, devoid of toxic side effects, compared with control mice or mice treated with the free metallodrug.

CONCLUSION: Copper complex-containing nanoliposomes demonstrate high anticancer efficacy and safety, constituting a step forward to the development of more effective therapeutic strategies against melanoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app