Add like
Add dislike
Add to saved papers

Adding Solvent into Ionic-Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance.

Most studies of ionic liquid (IL) gated field effect transistors (FETs) focus on the extremely large electric field and capacitance induced in liquid/solid interfaces and correspondingly the significantly enhanced carrier density in semiconductors, which can appreciably improve the gating performance. However, how to boost the switching speed, another key property of gating performance of FETs, has been rarely explored. In this work, the gating performance of molybdenum disulfide (MoS2) FETs, gated by the mixtures of IL/organic solvent (1-butyl-3-methylimidazolium tetrafluoroborate/acetonitrile, [Bmim][BF4]/ACN) at different ion concentrations, is investigated for both dynamic and static properties by a combination of molecular dynamics simulation and resistance network analysis. Results reveal that organic solvent can speed up the IL response time by a factor of about 40x at the optimal ion concentration of 1.94 M, which is mainly attributed to the increased ionic conductivity of IL via the addition of organic solvent. Meanwhile, the surface charge distribution of MoS2 becomes more homogenous after the addition of organic solvent, which increases the conductivity of MoS2 by up to 2.4x. Surprisingly, the optimal ion concentration for increased switching speed is nearly the same as that for achieving highest MoS2 conductivity. Thus, our findings provide a strategy to simultaneously improve the dynamics and static gating performance of IL-gated FETs as well as a modeling technique to screen out the ideal ion concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app