Add like
Add dislike
Add to saved papers

Coexistence of Alterations of Gastrointestinal Function and Mechanical Allodynia in the Reserpine-Induced Animal Model of Fibromyalgia.

BACKGROUND: Fibromyalgia (FM) is a disorder characterized by widespread chronic pain as core symptom and a broad range of comorbidities. Despite the prevalence of gastrointestinal (GI) comorbidities in patients with FM, GI functions have rarely been investigated in animal models of FM.

AIMS: The purpose of the present study is to investigate the coexistence of alterations of GI function in the reserpine-induced myalgia (RIM) rat, a validated FM model associated with disruption of monoamine system.

METHODS: Paw withdrawal threshold (von Frey hair test) was assessed as pain-associated indicator. Gastric emptying (13 C breath test), small intestinal transit (charcoal meal test), and fecal water content were investigated as GI functions.

RESULTS: The specific regimen of reserpine for the RIM rat, i.e., 1 mg/kg s.c., once daily for three consecutive days, caused a reduction of paw withdrawal threshold (i.e., mechanical allodynia) on days 3, 5, and 7 after the first injection. The 13 CO2 excreted from the RIM rat was significantly increased on day 7. The RIM rat exhibited an acceleration of small intestinal transit on day 5. Fecal water content collected from the RIM rat was significantly increased on days 3 and 5. The amount of noradrenaline was significantly decreased in GI tissues on days 3, 5, and 7 in the RIM rat. Conclusions This study revealed that accelerated gastric emptying, accelerated small intestinal transit, and increase in fecal water content coexist with mechanical allodynia in the RIM rat, simulating the coexistence of chronic pain and alterations of GI function in patients with FM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app