Add like
Add dislike
Add to saved papers

Flexible, Temperature-Resistant, and Fatigue-Free Ferroelectric Memory Based on Bi(Fe0.93Mn0.05Ti0.02)O3 Thin Film.

A recent hot-spot topic for flexible and wearable devices involves high-performance nonvolatile ferroelectric memories operating under compressive or tensile mechanical deformations. This work presents the direct fabrication of a flexible (Mn,Ti)-codoped multiferroic BiFeO3 film capacitor with Pt bottom and Au top electrodes on mica substrate. The fabricated polycrystalline Bi(Fe0.93Mn0.05Ti0.02)O3 film on mica exhibits superior ferroelectric switching behavior with robust saturated polarization (Ps ~ 93 μC/cm2) and remanent polarization (Pr ~ 66 μC/cm2), and excellent frequency stability (1 - 50 kHz) and temperature resistance (25 - 200 C) as well as reliable long-lifetime operation. More saliently, it can be safely bent to a small radius of curvature, as low as 2 mm, or go through repeated compressive/tensile mechanical flexing for 103 bending times at 4 mm radius without any obvious deterioration in polarization, retention time at 105 s, or fatigue resistance after 109 switching cycles. These findings demonstrate a novel route to the design of flexible BiFeO3-based ferroelectric memories for information storage and data processing, with promising applications in next-generation smart electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app