Add like
Add dislike
Add to saved papers

Conjugated, rigidified bibenzimidazole ancillary ligands for enhanced photoluminescence quantum yields of orange/red-emitting iridium(iii) complexes.

A series of six novel [Ir(C^N)2(N^N)](PF6) complexes (C^N is one of two cyclometalating ligands: 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine, MesppyH, or 2-(napthalen-1-yl)-4-(2,4,6-trimethylphenyl)pyridine, MesnpyH; N^N denotes one of four neutral diamine ligands: 4,4'-di-tert-butyl-2,2'-bipyridine, dtbubpy, 1H,1'H-2,2'-bibenzimiazole, H2bibenz, 1,1'-(α,α'-o-xylylene)-2,2'-bibenzimidazole, o-xylbibenz or 2,2'-biquinoline, biq) were synthesised and their structural, electrochemical and photophysical properties comprehensively characterised. The more conjugated MesnpyH ligands confer a red-shift in the emission compared to MesppyH but maintain high photoluminescence quantum yields due to the steric bulk of the mesityl groups. The H2bibenz and o-xylbibenz ligands are shown to be electronically indistinct to dtbubpy but give complexes with higher quantum yields than analogous complexes bearing dtbubpy. In particular, the rigidity of the o-xylbibenz ligand, combined with the steric bulk of the MesnpyH C^N ligands, gives a red-emitting complex 4 (λPL = 586, 623 nm) with a very high photoluminescence quantum yield (ΦPL = 44%) for an emitter in that region of the visible spectrum. These results suggest that employing these ligands is a viable strategy for designing more efficient orange-red emitters for use in a variety of photophysical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app