Add like
Add dislike
Add to saved papers

High-Performance Li-SeS x All-Solid-State Lithium Batteries.

Advanced Materials 2019 March 16
All-solid-state Li-S batteries are promising candidates for next-generation energy-storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeSx solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all-solid-state lithium batteries (ASSLBs). Theoretical calculations confirm the redistribution of electron densities after introducing Se. The interfacial ionic conductivities of all achieved SeSx -Li3 PS4 (x = 3, 2, 1, and 0.33) composites are 10-6 S cm-1 . Stable and highly reversible SeSx cathodes for sulfide-based ASSLBs can be developed. Surprisingly, the SeS2 /Li10 GeP2 S12 -Li3 PS4 /Li solid-state cells exhibit excellent performance and deliver a high capacity over 1100 mAh g-1 (98.5% of its theoretical capacity) at 50 mA g-1 and remained highly stable for 100 cycles. Moreover, high loading cells can achieve high areal capacities up to 12.6 mAh cm-2 . This research deepens the understanding of Se-S solid solution chemistry in ASSLB systems and offers a new strategy to achieve high-performance S-based cathodes for application in ASSLBs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app