Add like
Add dislike
Add to saved papers

Reaction norm analysis of pig growth using environmental descriptors based on alternative traits.

Contemporary group (CG) estimates of different phenotypes have not been widely explored for pigs. The objective of this study was to extend the traits used to derive environmental descriptors of the growing pig, to include CG estimates of early growth between birth and start of feed intake test (EADG), growth during feed intake test (TADG), lifetime growth (ADG), daily feed intake (DFI), backfat (BF) and muscle depth (MD). Pedigree and performance records (n = 7,746) from a commercial Australian piggery were used to derive environmental descriptors based on CG estimates of these six traits. The CG estimates of growth traits described different aspects of the environment from the CG estimates of carcass traits (r < 0.10). These definitions of the environment then were used in reaction norm analysis of growth, to evaluate sire-by-environment interaction (Sire × E) for growth. The most appropriate reaction norm model to evaluate Sire × E for growth was dependent on the environmental descriptor used. If the trait used to derive an environmental descriptor was distinctly different from growth (e.g., BF and MD), CG as an additional random effect was required in the model. If not included, inflated common litter effect and sire intercept variance suggest there was unaccounted environmental variability. There was no significant Sire × E using any of the definitions of the environment, with estimated variance in sire slopes largest when environments were defined by BF ( σ ^ bi 2  = 97 ± 83 (g/day)2 ), followed by environments defined by DFI ( σ ^ bi 2  = 39 ± 101 (g/day)2 ). While there appears to be differences in ability to detect Sire × E, improved data structure is required to better assess these environmental descriptors based on alternative traits. The ideal trait, or combination of traits, used to derive environmental descriptors may be unique for individual herds. Therefore, multiple phenotypes should be further explored for the evaluation of Sire × E for growth in the pig.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app