Add like
Add dislike
Add to saved papers

Identifying the Activation of Bimetallic Sites in NiCo 2 S 4 @g-C 3 N 4 -CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution.

Advanced Materials 2019 March 16
Hybrid materials composed of transition-metal compounds and nitrogen-doped carbonaceous supports are promising electrocatalysts for various electrochemical energy conversion devices, whose activity enhancements can be attributed to the synergistic effect between metallic sites and N dopants. While the functionality of single-metal catalysts is relatively well-understood, the mechanism and synergy of bimetallic systems are less explored. Herein, the design and fabrication of an integrated flexible electrode based on NiCo2 S4 /graphitic carbon nitride/carbon nanotube (NiCo2 S4 @g-C3 N4 -CNT) are reported. Comparative studies evidence the electronic transfer from bimetallic Ni/Co active sites to abundant pyridinic-N in underlying g-C3 N4 and the synergistic effect with coupled conductive CNTs for promoting reversible oxygen electrocatalysis. Theoretical calculations demonstrate the unique coactivation of bimetallic Ni/Co atoms by pyridinic-N species (a Ni, Co-N2 moiety), which simultaneously downshifts their d-band center positions and benefits the adsorption/desorption features of oxygen intermediates, accelerating the reaction kinetics. The optimized NiCo2 S4 @g-C3 N4 -CNT hybrid manifests outstanding bifunctional performance for catalyzing oxygen reduction/evolution reactions, highly efficient for realistic zinc-air batteries featuring low overpotential, high efficiency, and long durability, superior to those of physical mixed counterparts and state-of-the-art noble metal catalysts. The identified bimetallic coactivation mechanism will shed light on the rational design and interfacial engineering of hybrid nanomaterials for diverse applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app