Add like
Add dislike
Add to saved papers

Upper gastrointestinal pathophysiology due to mouse malaria Plasmodium berghei ANKA infection.

Background: Epigastric pain, vomiting, and other gastrointestinal problems are among the most important symptoms of malaria infection as they suggest the possibility that the condition is serious. Pathophysiologies such as gastric mucosal changes and delayed gastric emptying have been reported in serious cases of malaria infection. However, it is unclear whether or not pathophysiological involvement of the upper gastrointestinal tract occurs in Plasmodium berghei ANKA (PbA)-infected mice.

Methods: PbA-infective Anopheles mosquitoes were used to infect mice via the natural route of infection. Fifteen PbA-C57BL/6 mice were used as a cerebral malaria model and the same numbers of PbA-BALB/c mice were used as a cerebral malaria-resistant model, and then we investigated the pathophysiological involvement of the stomach and small intestine.

Results: On day 8 post infection, six PbA-C57BL/6 mice showed cerebral malaria and nine others had uncomplicated infection. All the PbA-C57BL/6 mice on that same day showed severe weight loss with multiple, red gastric patches and changes to the course of the small intestine with villus goblet cell enlargement. In addition, cerebral malaria cases showed gastric gas retention with submucosal edema and small intestinal shortening. In PbA-BALB/c mice, overextension of the stomach and gas retention were evident from week 2 after PbA infection, as well as changes to the course of the small intestine and mesenteric thinning with fragility.

Conclusions: We described the upper gastrointestinal pathophysiology representing new findings directly linked to malarial severity and subsequent death in PbA-infected mice as a mouse model of malaria infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app