Add like
Add dislike
Add to saved papers

Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts.

ISME Journal 2019 March 15
Insects have mutualistic symbioses with a variety of microorganisms. However, the chemical signals that maintain these insect-microbe relationships are poorly known compared to those from insect-plant symbioses. The spruce bark beetle, Ips typographus, the most destructive forest pest in Europe, has a symbiotic relationship with several fungi that are believed to contribute to its successful invasion of Norway spruce. Here we tested the hypothesis that volatile organic compounds (VOCs) emitted from fungal symbionts could be cues for bark beetles to recognize and distinguish among members of its microbial community. Behavioral experiments with fungi showed that immature adults of I. typographus are attracted to food sources colonized by their fungal symbionts but not to saprophytic fungi and that this attraction is mediated by volatile cues. GC-MS measurements revealed that the symbionts emitted VOCs. Testing the activity of these compounds on beetle antennae using single sensillum recordings showed that beetles detect many fungal volatiles and possess olfactory sensory neurons specialized for these compounds. Finally, synthetic blends of fungal volatiles attracted beetles in olfactometer experiments. These findings indicate that volatile compounds produced by fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impact on their fitness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app