Add like
Add dislike
Add to saved papers

Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route.

Scientific Reports 2019 March 15
Development of cost effective and efficient electrocatalysts is crucial to generate H2 as an alternative source of energy. However, expensive noble metal based electrocatalysts show best electrocatalytic performances which acts as main bottle-neck for commercial application. Therefore, non-precious electrocatalysts have become important for hydrogen and oxygen evolution reactions. Herein, we report the synthesis of high surface area (35 m2 /g) sodium niobate nanoparticles by citrate precursor method. These nanoparticles were characterized by different techniques like X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Electrocatalytic properties of cost-effective sodium niobate nanoparticles were investigated for HER and OER in 0.5 M KOH electrolyte using Ag/AgCl as reference electrode. The sodium niobate electrode showed significant current density for both OER (≈2.7 mA/cm2 ) and HER (≈0.7 mA/cm2 ) with onset potential of 0.9 V for OER and 0.6 V for HER. As-prepared sodium niobate nanoparticles show enhanced photocatalytic property (86% removal) towards the degradation of rose Bengal dye. Dielectric behaviour at different sintering temperatures was explained by Koop's theory and Maxwell-Wagner mechanism. The dielectric constants of 41 and 38.5 and the dielectric losses of 0.04 and 0.025 were observed for the samples sintered at 500 °C and 700 °C, respectively at 500 kHz. Conductivity of the samples was understood by using power law fit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app