Add like
Add dislike
Add to saved papers

Recognition of Multiclass Epileptic EEG Signals Based on Knowledge and Label Space Inductive Transfer.

Electroencephalogram (EEG) signal recognition based on machine learning models is becoming more and more attractive in epilepsy detection. For multiclass epileptic EEG signal recognition tasks including the detection of epileptic EEG signals from different blends of different background data and epilepsy EEG data and the classification of different types of seizures, we may perhaps encounter two serious challenges: (1) a large amount of EEG signal data for training are not available; (2) the models for epileptic EEG signal recognition are often so complicated that they are not as easy to explain as a linear model. In this study, we utilize the proposed transfer learning technique to circumvent the first challenge and then design a novel linear model to circumvent the second challenge. Concretely, we originally combine γ -LSR with transfer learning to propose a novel knowledge and label space inductive transfer learning model for multiclass EEG signal recognition. By transferring both knowledge and the proposed generalized label space from source domain to target domain, the proposed model achieves enhanced classification performance on target domain without the use of kernel trick. In contrast to the other inductive transfer learning methods, the method uses the generalized linear model such that it becomes simpler and more interpretable. Experimental results indicate the effectiveness of the proposed method for multiclass epileptic EEG signal recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app