Add like
Add dislike
Add to saved papers

Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease.

Mitochondrial disease (MD) is a group of rare inherited disorders with clinical heterogeneous phenotypes. Recent advances in next-generation sequencing (NGS) allow for rapid genetic diagnostics in patients who experience MD, resulting in significant strides in determining its etiology. This, however, has not been the case in many patient populations. We report on a molecular diagnostic study using mitochondrial DNA and targeted nuclear DNA (nDNA) NGS of an extensive cohort of predominantly sub-Saharan African pediatric patients with clinical and biochemically defined MD. Patients in this novel cohort presented mostly with muscle involvement (73%). Of the original 212 patients, a muscle respiratory chain deficiency was identified in 127 cases. Genetic analyses were conducted for these 127 cases based on biochemical deficiencies, for both mitochondrial (n = 123) and nDNA using panel-based NGS (n = 86). As a pilot investigation, whole-exome sequencing was performed in a subset of African patients (n = 8). These analyses resulted in the identification of a previously reported pathogenic mitochondrial DNA variant and seven pathogenic or likely pathogenic nDNA variants (ETFDH, SURF1, COQ6, RYR1, STAC3, ALAS2, and TRIOBP), most of which were identified via whole-exome sequencing. This study contributes to knowledge of MD etiology in an understudied, ethnically diverse population; highlights inconsistencies in genotype-phenotype correlations; and proposes future directions for diagnostic approaches in such patient populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app