Add like
Add dislike
Add to saved papers

Inhibition of prostaglandin biosynthesis leads to suppressed ovarian development in Spodoptera exigua.

Prostaglandins (PGs) are a group of eicosanoids that are C20 oxygenated polyunsaturated fatty acids. PGs can mediate various physiological processes such as immunity, salivary secretion, excretion, and reproduction in insects. The objective of this study was to determine the effect of PG on oocyte development in Spodoptera exigua, a lepidopteran insect known to biosynthesize PGs. Polytrophic ovarioles of S. exigua females exhibited follicle development in germarium, in which oocytes were distinct from nurse cells. During vitellogenesis, nurse cells degenerated by losing cytoplasm called "nurse cell dumping" while oocytes showed increase in cell volume. When PG biosynthesis inhibitors such as ibuprofen or aspirin were applied, nurse cell dumping was not complete and no chorion was formed, thus preventing egg formation. However, addition of PGE2 significantly rescued such inhibition and resumed oocyte development and choriogenesis. To support the observation with genetic factor, RNA interference (RNAi) specific to peroxynectins (Pxts: Se-Pxt1 and Se-Pxt2) known to act as insect cyclooxygenase was performed to suppress PG biosynthesis. Both Se-Pxt1 and Se-Pxt2 were highly expressed in the ovary of control female. RNAi treatment against Se-Pxt1 or Se-Pxt2 specifically suppressed target genes and inhibited oocyte development. Addition of PGE2 to adults treated with RNAi rescued the suppressed development of oocytes. Results of this study suggest that PGs can stimulate oocyte development as autocrine/paracrine mediators of vitellogenesis and choriogenesis in insects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app