Normal and pathological gait classification LSTM model

Margarita Khokhlova, Cyrille Migniot, Alexey Morozov, Olga Sushkova, Albert Dipanda
Artificial Intelligence in Medicine 2019, 94: 54-66
Computer vision-based clinical gait analysis is the subject of permanent research. However, there are very few datasets publicly available; hence the comparison of existing methods between each other is not straightforward. Even if the test data are in an open access, existing databases contain very few test subjects and single modality measurements, which limit their usage. The contributions of this paper are three-fold. First, we propose a new open-access multi-modal database acquired with the Kinect v.2 camera for the task of gait analysis. Second, we adapt to use the skeleton joint orientation data to calculate kinematic gait parameters to match golden-standard MOCAP systems. We propose a new set of features based on 3D low-limbs flexion dynamics to analyze the symmetry of a gait. Third, we design a Long-Short Term Memory (LSTM) ensemble model to create an unsupervised gait classification tool. The results show that joint orientation data provided by Kinect can be successfully used in an inexpensive clinical gait monitoring system, with the results moderately better than reported state-of-the-art for three normal/pathological gait classes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"