Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization

Sameera V Mohd Sagheer, Sudhish N George
Artificial Intelligence in Medicine 2019, 94: 1-17
Low-dose Computed Tomography (CT) imaging is a most commonly used medical imaging modality. Though the reduction in dosage reduces the risk due to radiation, it leads to an increase in noise level. Hence, it is a mandatory requirement to include a noise reduction technique as a pre- and/or post-processing step for better disease diagnosis. The nuclear norm minimization has attracted a great deal of research interest in contemporary years. This paper proposes a low-rank approximation based approach for denoising of CT images by effectively utilizing the global spatial correlation and local smoothness properties. The tensor nuclear norm is used to describe the global properties and the tensor total variation is used to characterize the local smoothness as well as to improve global smoothness. The resulting optimization problem is solved by the Alternative Direction Method of Multipliers (ADMM) technique. Experimental results on simulated and real CT data prove that the proposed methods outperform the state-of-art works.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"