Add like
Add dislike
Add to saved papers

Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology.

Materials 2019 March 14
Silicones are widely used medical materials that are also applied for tympanostomy tubes with a trending goal to functionalise the surface of the latter to enhance the healing of ear inflammations and other ear diseases, where such medical care is required. This study focuses on silicone surface treatment with various antimicrobial coatings. Polysaccharide coatings in the form of chitosan nanoparticles alone, or with an embedded drug mixture composed of amoxicillin/clavulanic acid (co-amoxiclav) were prepared and applied onto silicone material. Plasma activation was also used as a pre-treatment for activation of the material's surface for better adhesion of the coatings. The size of the nanoparticles was measured using the DLS method (Dynamic Light Scattering), stability of the dispersion was determined with zeta potential measurements, whilst the physicochemical properties of functionalised silicone materials were examined using the UV-Vis method (Ultraviolet-Visible Spectroscopy), SEM (Scanning Electron Microscopy), XPS (X-Ray Photoelectron Spectroscopy). Moreover, in vitro drug release testing was used to follow the desorption kinetics and antimicrobial properties were tested by a bacterial cell count reduction assay using the standard gram-positive bacteria Staphylococcus aureus . The results show silicone materials as suitable materials for tympanostomy tubes, with the coating developed in this study showing excellent antimicrobial and biofilm inhibition properties. This implies a potential for better healing of ear inflammation, making the newly developed approach for the preparation of functionalised tympanostomy tubes promising for further testing towards clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app