Add like
Add dislike
Add to saved papers

β-Apopicropodophyllin functions as a radiosensitizer targeting ER stress in non-small cell lung cancer.

AIMS: In this study, we examined whether β-apopicropodophyllin (APP) could act as a radiosensitizer in non-small cell lung cancer (NSCLC) cells.

MAIN METHODS: The in vitro radiosensitizing activity of APP was demonstrated with clonogenic assay, immunoblotting, Annexin V-Propidium iodide (PI) assay, BrdU incorporation, detection of mitochondrial ROS/intracellular of H2 O2 , mitochondrial membrane potential detection, and performing of isolation of mitochondrial and cytosolic fractions. The in vivo radiosensitizing activity of APP was determined in xenografted mice with co-treatment of APP and IR based on measurement of tumor volumes and apoptotic cell death.

KEY FINDINGS: The results of a clonogenic assay indicated that a combination of APP and γ-ionizing radiation (IR) inhibits cell growth and increases cell death in NSCLC cells. Several signal transduction pathways were examined for their potential involvement in the apparent radiosensitization effect of APP, as assessed by immunoblotting analyses and mitochondrial potential determination in vitro. Treatment of NCI-H460 cells with 15 nM APP and NCI-H1299 cells with 10 nM APP yielded dose-enhancement ratios of 1.44 and 1.24, respectively. Enhanced ER stress, disrupted mitochondrial membrane potential, and increased reactive oxygen species (ROS) were observed in cells co-treated with APP and IR, and this was followed by the cytosolic release of cytochrome c and consequent activation of caspase-3 and -9. Notably, inhibition of JNK, which prevents caspase activation, blocked the APP/IR-induced activations of ER stress and apoptotic cell death. In NCI-H460 or NCI-H1299 cell-xenografted mice, APP/IR treatment delayed the time it took tumors to reach a threshold size by 22.38 and 16.83 days, respectively, compared with controls, to yield enhancement factors of 1.53 and 1.38, respectively.

SIGNIFICANCE: APP has a radiosensitizing function derived from its ability to induce apoptotic cell death via activation of ER stress, disruption of mitochondrial membrane potential, and induction of the caspase pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app