Add like
Add dislike
Add to saved papers

Biochemical and molecular biomarkers in integument biopsies of free-ranging coastal bottlenose dolphins from southern Brazil.

Chemosphere 2019 March 3
Adverse effects of exposure to persistent organic pollutants (POPs) threaten the maintenance of odontocete populations. In southern Brazil, coastal bottlenose dolphins from the Laguna Estuarine System (LES) and Patos Lagoon Estuary (PLE) were sampled using remote biopsies during the winter and summer months. Levels of bioaccumulated POPs were measured in the blubber. The activities of glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also quantified, as were the mRNA transcript levels of aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT), cytochrome P450 1A1-like (CYP1A1), metallothionein 2A (MT2A), GST-π, GPx-4, GR, interleukin 1 alpha (IL-1α), and major histocompatibility complex II (MHCII) in the skin. In general, levels of POPs were similar among sites, sexes, ages and seasons. For most animals, total polychlorinated biphenyl (ΣPCBs) levels were above the threshold level to have physiological effects on and pose risks to cetaceans. The best-fitting generalized linear models (GLMs) found significant associations between GR, IL-1α and GPx-4 transcript levels, SOD and GST activities, and total polybrominated diphenyl ether (ΣPBDEs) and pesticide levels. GLMs and Kruskal-Wallis analyses also indicated that there were higher transcript levels for most genes and lower GST activity in the winter. These results reinforce the need to consider the influence of environmental traits on biomarker values in wildlife assessments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app