Add like
Add dislike
Add to saved papers

Increased salt intake does not worsen the progression of renal cystic disease in high water-loaded PCK rats.

The anti-diuretic hormone arginine vasopressin is thought to be a detrimental factor in polycystic kidney disease (PKD). We previously reported that high water intake (HWI) reduced urine osmolality and urinary arginine vasopressin, improved renal function, and reduced the kidney/body weight ratio in PCK rats, an orthologous model of human PKD. In PKD patients, however, it is reported that HWI increases total kidney volume, urine volume, and urine sodium excretion, which could be a consequence of high salt intake. In the current study, we loaded PCK rats with high salt concurrently with HWI to determine whether this human-imitated condition exacerbates disease progression. PCK rats were assigned into 4 groups: control group (CONT: distilled water), HWI group (HWI: 5% glucose in water), HWI with 0.2% NaCl group (HWI+0.2%NaCl), and HWI with 0.45% NaCl group (HWI+0.45%NaCl). Total water intake during the experimental period was increased by 1.86-, 2.02-, and 2.42-fold in HWI, HWI+0.2%NaCl, and HWI+0.45%NaCl, and sodium intake was increased by 2.55- and 5.83-fold in HWI+0.2%NaCl and HWI+0.45%NaCl, respectively, compared with CONT. Systolic blood pressure was higher in HWI+0.2%NaCl and HWI+0.45%NaCl than in both CONT and HWI. Serum urea nitrogen, kidney/body weight ratio, cAMP, cystic area, and fibrosis index were significantly lower in HWI compared with CONT, and these ameliorative effects were not abrogated in either HWI+0.2%NaCl or HWI+0.45%NaCl. The amount of sodium excreted into the urine was increased by 2.50- and 8.38-fold in HWI+0.2%NaCl and HWI+0.45%NaCl, respectively, compared with HWI. Serum sodium levels were not different between the groups. These findings indicate that the beneficial effect of HWI against the progression of cystic kidney disease was not affected even by high salt-overload in this rodent model of PKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app