Add like
Add dislike
Add to saved papers

Establishment and characterization of Drosophila cell lines mutant for heparan sulfate modifying enzymes.

Glycobiology 2019 March 15
A class of carbohydrate-modified proteins, heparan sulfate proteoglycans (HSPGs), play critical roles both in normal development and during disease. Genetic studies using a model organism, Drosophila, have been contributing to understanding the in vivo functions of HSPGs. Despite the many strengths of the Drosophila model for in vivo studies, biochemical analysis of Drosophila HS is somewhat limited, mainly due to the insufficient amount of the material obtained from the animal. To overcome this obstacle, we generated mutant cell lines for four HS modifying enzymes that are critical for the formation of ligand binding sites on HS, Hsepi, Hs2st, Hs6st, and Sulf1, using a recently established method. Morphological and immunological analyses of the established lines suggest that they are spindle-shaped cells of mesodermal origin. The disaccharide profiles of HS from these cell lines showed characteristics of lack of each enzyme as well as compensatory modifications by other enzymes. Metabolic radio-labelling of HS allowed us to assess chain length and net charge of the total population of HS in wild-type and Hsepi mutant cell lines. We found that Drosophila HS chains are significantly shorter than those from mammalian cells. BMP signaling assay using Hs6st cells indicates that molecular phenotypes of these cell lines are consistent with previously known in vivo phenomena. The established cell lines will provide us with a direct link between detailed structural information of Drosophila HS and a wealth of knowledge on biological phenotypic data obtained over the last two decades using this animal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app