Add like
Add dislike
Add to saved papers

A frame-shifted gene, which rescued its function by non-natural start codons and its application in constructing synthetic gene circuits.

Background: Frame-shifted genes results in non-functional peptides. Because of this complete loss of function, frame-shifted genes have never been used in constructing synthetic gene circuits.

Results: Here we report that the function of gene circuits is rescued by a frame-shifted gene, which functions by translating from a non-natural start codon. We report a single nucleotide deletion mutation that developed in the λ-repressor cI within a synthetic genetic NOT gate in Escherichia coli during growth and through this mutation, a non-functional synthetic gene circuit became functional. This mutation resulted in a frame-shifted cI, which showed effective functionality among genetic NOT-gates in Escherichia coli with high regulatory ranges (> 300) and Hill coefficient (> 6.5). The cI worked over a large range of relative copy numbers between the frame-shifted gene and its target promoter. These properties make this frame-shifted gene an excellent candidate for building synthetic gene circuits. We hypothesized a new operating mechanism and showed evidence that frame-shifted cI was translated from non-natural start codon. We have engineered and tested a series of NOT gates made from a library of cI genes, each of which starts from a different codon within the first several amino acids of the frame-shifted cI. It is found that one form with start codon ACA, starting from the 3rd codon had similar repression behavior as the whole frame-shifted gene. We demonstrated synthetic genetic NAND and NOR logic-gates with frame-shifted cI. This is the first report of synthetic-gene-circuits made from a frame-shifted gene.

Conclusions: This study inspires a new view on frame-shifted gene and may serve as a novel way of building and optimizing synthetic-gene-circuits. This work may also have significance in the understanding of non-directed evolution of synthetic genetic circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app