Add like
Add dislike
Add to saved papers

An essential role for miRNA167 in maternal control of embryonic and seed development.

Plant Physiology 2019 March 14
Maternal cells play a critical role in ensuring the normal development of embryos, endosperms, and seeds. Mutations that disrupt the maternal control of embryogenesis and seed development are difficult to identify. Here, we completely deleted four MICRORNA167 (MIR167) genes in Arabidopsis thaliana using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing technology We found that plants with a deletion of MIR167A phenocopied plants overexpressing miRNA167-resistant versions of Auxin Response Factor 6 (ARF6) or ARF8, two miRNA167 targets. Both the mir167a mutant and the ARF overexpression lines were defective in anther dehiscence and ovule development. Serendipitously, we found that the mir167a (♀) x wild type (WT) (♂) crosses failed to produce normal embryos and endosperms, despite the findings that embryos with either mir167a+/- or mir167a-/- genotypes developed normally when mir167a+/- plants were self-pollinated, revealing a central role of MIR167A in maternal control of seed development. The mir167a phenotype is 100% penetrant, providing a great genetic tool for studying the roles of miRNAs and auxin in maternal control. Moreover, we found that mir167a mutants flowered significantly later than WT plants, a phenotype that was not observed in the ARF overexpression lines. We show that the reproductive defects of mir167a mutants were suppressed by a decrease of activities of ARF6, ARF8, or both. Our results clearly demonstrate that MIR167A is the predominant MIR167 member in regulating Arabidopsis reproduction, and that MIR167A acts as a maternal gene that functions largely through ARF6 and ARF8.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app