Add like
Add dislike
Add to saved papers

Adenosine A 2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of β-catenin in osteoblasts.

Osteoblast differentiation and proliferation are regulated by several modulators, among which are adenosine A2A receptors (A2ARs) and Wingless/Integrated-β-catenin pathways. Cytosolic β-catenin stabilization promotes its nuclear translocation and transcriptional activity. In the present study, we seek to determine whether there is a connection between A2AR stimulation and cellular β-catenin levels in osteoblasts. Osteoblast precursor cell line (MC3T3-E1) and primary murine osteoblasts were treated with CGS21680, a highly selective A2AR agonist. We analyzed cellular content and nuclear translocation of phosphorylated (p)-serine 552 (S552) β-catenin in response to A2AR stimulation in MC3T3-E1 cells, in both wild-type and A2AR knockout (A2AKO) mice. Moreover, we measured cellular β-catenin levels in MC3T3-E1 cells transfected with scrambled or protein kinase B (Akt) small interfering RNA following A2AR activation. CGS21680 (1 μM) stimulated an increase in both the cellular content and nuclear translocation of p-S552 β-catenin after 15 min of incubation. A2AR activation had no tangible effect on the cellular β-catenin level either in A2AKO mice or in osteoblasts with diminished Akt content. Our findings demonstrate an interaction between A2AR, β-catenin, and Akt signaling in osteoblasts. The existence of such a crosstalk has significant repercussions in the development of novel therapeutic approaches targeting medical conditions associated with reduced bone density.-Borhani, S., Corciulo, C., Larranaga-Vera, A., Cronstein, B. N. Adenosine A2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of β-catenin in osteoblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app