Add like
Add dislike
Add to saved papers

Genetically Encoded FRET-Based Tension Sensors.

Genetically encoded Förster resonance energy transfer (FRET)-based tension sensors measure piconewton-scale forces across individual molecules in living cells or whole organisms. These biosensors show comparably high FRET efficiencies in the absence of tension, but FRET quickly decreases when forces are applied. In this article, we describe how such biosensors can be generated for a specific protein of interest, and we discuss controls to confirm that the observed differences in FRET efficiency reflect changes in molecular tension. These FRET efficiency changes can be related to mechanical forces as the FRET-force relationship of the employed tension sensor modules are calibrated. We provide information on construct generation, expression in cells, and image acquisition using live-cell fluorescence lifetime imaging microscopy (FLIM). Moreover, we describe how to analyze, statistically evaluate, and interpret the resulting data sets. Together, these protocols should enable the reader to plan, execute, and interpret FRET-based tension sensor experiments. © 2019 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app