Add like
Add dislike
Add to saved papers

A Model Integration Pipeline for the Improvement of Human Genome-Scale Metabolic Reconstructions.

Metabolism has been a major field of study in the last years, mainly due to its importance in understanding cell physiology and certain disease phenotypes due to its deregulation. Genome-scale metabolic models (GSMMs) have been established as important tools to help achieve a better understanding of human metabolism. Towards this aim, advances in systems biology and bioinformatics have allowed the reconstruction of several human GSMMs, although some limitations and challenges remain, such as the lack of external identifiers for both metabolites and reactions. A pipeline was developed to integrate multiple GSMMs, starting by retrieving information from the main human GSMMs and evaluating the presence of external database identifiers and annotations for both metabolites and reactions. Information from metabolites was included into a graph database with omics data repositories, allowing clustering of metabolites through their similarity regarding database cross-referencing. Metabolite annotation of several older GSMMs was enriched, allowing the identification and integration of common entities. Using this information, as well as other metrics, we successfully integrated reactions from these models. These methods can be leveraged towards the creation of a unified consensus model of human metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app