Add like
Add dislike
Add to saved papers

Transforming Growth Factor-β Promotes Homing and Therapeutic Efficacy of Human Mesenchymal Stem Cells to Glioblastoma.

Human mesenchymal stem cell-based tumor therapeutic gene delivery is regarded as a promising strategy for the treatment of glioblastoma (GBM). However, the efficiency of these stem cells to home to the target sites limits their potential curative effect and clinical application. In this work, we provide a novel pretreatment approach for enhancing the homing capacity of human adipose-derived mesenchymal stem cells (hAMSCs) for stem cell-based tumor gene delivery for GBM therapy. Pre-exposure of these stem cells to TGF-β resulted in enhanced homing ability to GBM through increasing CXC chemokine receptor 4 (CXCR4) expression, as evidenced by a diminishing homing capacity when inhibition of the TGF-β receptor II and CXCR4 was applied. In addition, by pretreating hAMSCs expression of tumor necrosis factor-related apoptosis-inducing ligand with TGF-β, we achieved significant enhancements in the therapeutic efficacy as demonstrated by an increased number of migrated hAMSCs to target sites, decreased tumor volume, and prolonged survival time in a murine model of GBM. These findings highlight a straightforward method in which cell preconditioning methodology is utilized to promote therapeutic efficacy of a biological treatment for GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app