Add like
Add dislike
Add to saved papers

Computational Fluid Dynamics Characterization of Two Patient-Specific Systemic-to-Pulmonary Shunts before and after Operation.

Studying the haemodynamics of the central shunt (CS) and modified Blalock-Taussig shunt (MBTS) benefits the improvement of postoperative recovery for patients with an aorta-pulmonary shunt. Shunt configurations, including CS and MBTS, are virtually reconstructed for infants A and B based on preoperative CT data, and three-dimensional models of A, 11 months after CS, and B, 8 months after MBTS, are reconstructed based on postoperative CT data. A series of parameters including energy loss, wall shear stress, and shunt ratio are computed from simulation to analyse the haemodynamics of CS and MBTS. Our results showed that the shunt ratio of the CS is approximately 30% higher than the MBTS and velocity distribution in the left pulmonary artery (LPA) and right pulmonary artery (RPA) was closer to a natural development in the CS than the MBTS. However, energy loss of the MBTS is lower, and the MBTS can provide more symmetric pulmonary artery (PA) flow than the CS. With the growth of infants A and B, the shunt ratio of infants was decreased, but maximum wall shear stress and the distribution region of high wall shear stress (WSS) were increased, which raises the probability of thrombosis. For infant A, the preoperative abnormal PA structure directly resulted in asymmetric growth of PA after operation, and the LPA/RPA ratio decreased from 0.49 to 0.25. Insufficient reserved length of the MBTS led to traction phenomena with the growth of infant B; on the one hand, it increased the eddy current, and on the other hand, it increased the flow resistance of anastomosis, promoting asymmetric PA flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app