Add like
Add dislike
Add to saved papers

Area under the forced expiratory flow-volume loop in spirometry indicates severe hyperinflation in COPD patients.

Background: Severe hyperinflation causes detrimental effects such as dyspnea and reduced exercise capacity and is an independent predictor of mortality in COPD patients. Static lung volumes are required to diagnose severe hyperinflation, which are not always accessible in primary care. Several studies have shown that the area under the forced expiratory flow-volume loop (AreaFE) is highly sensitive to bronchodilator response and is correlated with residual volume/total lung capacity (RV/TLC), a common index of air trapping. In this study, we investigate the role of AreaFE% (AreaFE expressed as a percentage of reference value) and conventional spirometry parameters in indicating severe hyperinflation.

Materials and methods: We used a cohort of 215 individuals with COPD. The presence of severe hyperinflation was defined as elevated air trapping (RV/TLC >60%) or reduced inspiratory fraction (inspiratory capacity [IC]/TLC <25%) measured using body plethysmography. AreaFE% was calculated by integrating the maximal expiratory flow-volume loop with the trapezoidal rule and expressing it as a percentage of the reference value estimated using predicted values of FVC, peak expiratory flow and forced expiratory flow at 25%, 50% and 75% of FVC. Receiver operating characteristics (ROC) curve analysis was used to identify cut-offs that were used to indicate severe hyperinflation, which were then validated in a separate group of 104 COPD subjects.

Results: ROC analysis identified cut-offs of 15% and 20% for AreaFE% in indicating RV/TLC >60% and IC/TLC <25%, respectively (N=215). On validation (N=104), these cut-offs consistently registered the highest accuracy (80% each), sensitivity (68% and 75%) and specificity (83% and 80%) among conventional parameters in both criteria of severe hyperinflation.

Conclusion: AreaFE% consistently provides a superior estimation of severe hyperinflation using different indices, and may provide a convenient way to refer COPD patients for body plethysmography to address static lung volumes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app