Add like
Add dislike
Add to saved papers

Extraction of Geriatric Syndromes From Electronic Health Record Clinical Notes: Assessment of Statistical Natural Language Processing Methods.

BACKGROUND: Geriatric syndromes in older adults are associated with adverse outcomes. However, despite being reported in clinical notes these syndromes are often poorly captured by diagnostic codes in the structured fields of electronic health records (EHRs) or administrative records.

OBJECTIVE: We aim to automatically determine if a patient has any geriatric syndromes by mining the free text of associated EHR clinical notes. We assessed which statistical natural language processing (NLP) techniques are most effective.

METHODS: We applied Conditional Random Fields (CRFs), a widely used machine learning algorithm, to identify each of 10 geriatric syndrome constructs in a clinical note. We assessed three sets of features/attributes for CRF operations: a base set, enhanced token, and contextual features. We trained the CRF on 3901 manually annotated notes from 85 patients, tuned the CRF on a validation set of 50 patients, and evaluated it on 50 held-out test patients. These notes were from a group of US Medicare (over 65) patients enrolled in a "Medicare-Advantage" HMO and cared for by a large group practice in Massachusetts.

RESULTS: A final feature set was formed through comprehensive feature ablation experiments. The final CRF model performed well at patient-level determination (macro-F1=0.834, micro-F1=0.851); however, performance varied by construct. For example, at phrase-partial evaluation, CRF worked well on constructs like absence of fecal control (F1=0.857) and vision impairment (F1=0.798), but poorly on malnutrition (F1=0.155), weight loss (F1=0.394) and severe urinary control issues (F1=0.532). Errors were primarily due to previously unobserved words (out-of-vocabulary) and a lack of context.

CONCLUSIONS: This study shows that statistical NLP can be used to identify geriatric syndromes from EHR-extracted clinical notes. This creates new opportunities to identify patients with geriatric syndromes and study their health outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app