Add like
Add dislike
Add to saved papers

Comparative Gene-Expression Analysis of Alzheimer's Disease Progression with Aging in Transgenic Mouse Model.

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive memory dysfunction and a decline in cognition. One of the biggest challenges to study the pathological process at a molecular level is that there is no simple, cost-effective, and comprehensive gene-expression analysis tool. The present study provides the most detailed (Reverse transcription polymerase chain reaction) RT-PCR-based gene-expression assay, encompassing important genes, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) disease pathway. This study analyzed age-dependent disease progression by focusing on pathological events such as the processing of the amyloid precursor protein, tau pathology, mitochondrial dysfunction, endoplasmic reticulum stress, disrupted calcium signaling, inflammation, and apoptosis. Messenger RNA was extracted from the cortex and hippocampal region of APP/PS1 transgenic mice. Samples were divided into three age groups, six-, nine-, and 12-month-old transgenic mice, and they were compared with normal C57BL/6J mice of respective age groups. Findings of this study provide the opportunity to design a simple, effective, and accurate clinical analysis tool that can not only provide deeper insight into the disease, but also act as a clinical diagnostic tool for its better diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app