Add like
Add dislike
Add to saved papers

Tailoring a Silver Paste for Additive Manufacturing of Co-Fired Ferrite Magnetic Components.

Materials 2019 March 12
Additive manufacturing (AM), or 3D-printing, has the potential for rapid prototyping of innovative designs of magnetic components used in power electronics converters. In this study, we tailored a silver paste as the metal feedstock of an extrusion 3D printer so that the metal would be compatible with a ferrite paste feedstock for 3D-printing of ferrite magnetic components. We focused on adjusting the metal formulation to match its shrinkage to that of the ferrite and to improve adhesion during the co-sintering process of the printed part. We found that a 5 wt % addition of ferrite powder in the metal paste can achieve matched shrinkage and strong adhesion. Evaluation of the co-sintered magnetic components showed no significant defects, such as cracks, warpage, or delamination, between the metal and ferrite. The shear strength between the two sintered materials was greater than 50 MPa, and the electrical resistivity of the sintered metal winding was less than twice that of the bulk silver, which is lower than those of most 3D-printed winding metals reported in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app